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Preface

In July 2023, the IGS2023 - International Geometry Summit features 5 major conferences
in Computer Graphics and applications

• Shape Modeling International (SMI)

• Symposium on Physical and Solid Modeling (SPM)

• SIAM Conference on Computational Geometric Design (GD)

• EG Symposium on Geometry Processing (SGP)

• Geometric Modeling and Processing (GMP)

IGS2023 posters describe preliminary results, ongoing projects, recent published work,
or software and systems (e.g., open source libraries, experimental setup) in several areas
related to

• solid and physical modelling

• computational geometric design

• shape modelling and analysis

• geometric modelling and processing

After a review phase, 19 poster presentations were accepted to the program, and they
were presented during a joint poster session of IGS2023 that offered interactive discussion
between presenters and attendees. attendees.

Special thanks are given to the IGS2023 Chairs, Michela Spagnuolo. Konrad Polthier and
Wenping Wang, for their support to the IGS2023 Poster Session.

Poster Co-Chairs
Daniela Cabiddu (CNR-IMATI, Italy)
Nicolas Mellado (CNRS, France)
Claudio Mancinelli (University of Genoa, Italy)
Nelly Villamizar (Swansea University, Galles)
Ligang Liu (University of Science and Technology of China, China)
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A library for robust linear barycentric rational interpolation

Chiara Fudaa, Kai Hormanna

aUniversità della Svizzera italiana, Via la Santa, Lugano, 6962, Switzerland

Keywords: Interpolation, Stability, Floating-point arithmetic, C++ library

Abstract

Given a set of n + 1 interpolation nodes Xn = (x0, x1, . . . , xn) with x0 < x1 < · · · < xn and some
associated data Yn = (y0, y1, . . . , yn), the barycentric rational interpolant r : R → R that interpolates yi at
xi can be expressed in second barycentric form as

r(x) =

∑n
i=0

wi

x−xi
yi∑n

i=0
wi

x−xi

(1)

for some non-zero weights Wn = (w0, w1, . . . , wn) [6]. We focus on linear barycentric rational interpolation,
meaning that the denominator does not depend on the data Yn, and we use weights wi that guarantee the
absence of poles in the interpolant. Floater and Hormann [3] propose a linear barycentric interpolant by
considering a parameter d ∈ {0, 1, . . . , n} and the barycentric weights

wi =

min(i,n−d)∑

k=max(i−d,0)
(−1)

k
k+d∏

j=k, j 6=i

1

xi − xj
, i = 0, 1, . . . , n, (2)

which covers both the already known Berrut ’s case for d = 0 [1] and the polynomial one for d = n [2].
The barycentric formula (1) is widely used to evaluate the interpolant r, as it can be implemented with an
efficient O(n) algorithm and the wi can be rescaled by a common factor to prevent overflow and underflow
errors [2]. However, there exists another mathematically equivalent formula to evaluate r, namely the first
barycentric form

r(x) =

∑n
i=0

wi

x−xi
fi

∑n−d
i=0 λi(x)

, (3)

where

λi(x) =
(−1)

i

(x− xi) · · · (x− xi+d)
, i = 0, 1, . . . , n− d. (4)

While this formula is slightly inferior in terms of efficiency, because it requires O(nd) operations to be
computed straightforwardly, there exists a more efficient way of computing its denominator in O(n) opera-
tions [5].

In this poster, we present the BRI library, which features a new C++ class template that contains all
variables and functions related to linear barycentric rational interpolation. Since there exist several algo-
rithms to evaluate a barycentric rational interpolant based on formulas (1) and (2), the library is designed
to autonomously select the best method to be used on a case-by-case basis, as it takes into account the latest
results regarding the efficiency and numerical stability of barycentric rational interpolation [5]. Moreover,
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we describe a new technique that makes the code robust and less prone to overflow and underflow errors. In
addition to the standard C++ data types, the BRI template variables can also be defined with arbitrary pre-
cision, because the BRI library is compatible with the Multiple Precision Floating-Point Reliable (MPFR)
library [4].

Example

Let us consider n = 9, n+ 1 Chebyshev interpolation nodes in [a, b] = [0, 10−12], i.e.

xi =
a+ b

2
− b− a

2
cos

(2i+ 1)π

2n+ 2
, i = 0, 1, . . . , n

and d = 2. We then set yi = f(xi) for i = 0, 1, . . . , n, where the test function f is defined as

f(x) = 3
4e
− (9x−2)2

4 + 3
4e
− (9x+1)2

49 + 1
2e
− (9x−7)2

4 + 1
5e
−(9x−4)2 ,

and we evaluate the barycentric interpolant r at the midpoint of the interval, x = 10−12/2. If we compute
r(x) in single precision with the standard implementation of (1) or (2), then we get r(x) = −nan due to the
overflow of all terms wiyi/(x− xi), i = 1, . . . , n− 1. For example,

w1

x− x1
y1 = −6.2335× 1038,

which is not representable as single precision floating-point number, because the smallest such number is
≈ −3.4028× 1038. The BRI library is able to overcome this problem thanks to the new technique that we
explain in the poster, thus obtaining the correct result r(x) = 1.01076 with both barycentric formulas.

References

[1] Berrut, J.P., 1988. Rational functions for guaranteed and experimentally well-conditioned global interpolation 15, 1–16.
doi:10.1016/0898-1221(88)90067-3.
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[5] Fuda, C., Campagna, R., Hormann, K., 2022. On the numerical stability of linear barycentric rational interpolation 152,

761–786. doi:10.1007/s00211-022-01316-w.
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NURBS-based workflow and G-code for precise Additive Manufacturing

Javier Sánchez-Reyesa, Jesús M. Chacóna, Javier Vallejoa, Pedro J. Núñezb

aIMACI, ETS Ingeniería Industrial de Ciudad Real, UCLM Universidad de Castilla-La Mancha (Spain)
bETS Ingeniería Industrial de Ciudad Real, UCLM Universidad de Castilla-La Mancha (Spain)

Keywords: Additive manufacturing, NURBS, cubic Bézier curve, G-code, G2/3 command, G5 command

Abstract

We put forward [1] a streamlined AM workflow with a seamless transfer from the initial CAD description
to the final G-code. Adhering to the NURBS standard at all steps avoids multiple representations, polygonal
approximations, and associated errors.

The traditional AM workflow consists of an initial polygonization of the object (e.g., via STL), slicing
this approximation, offsetting the polygonal sections, and finally generating G-code made up of polyline
trajectories (G1 commands). This workflow does not meet the requirements for truly functional parts
regarding quality and precision, especially in large-scale 3D printing, hence wasting the possibilities of
existing AM hardware.

Our proposal (Fig. 1) bypasses the polygonal approximation and then proceeds as follows:
(1) Direct slicing of the CAD model in the NURBS environment provided by a NURBS-based CAD system.
(2) Path planning, including offset trajectories, in this NURBS environment.
(3) Accurate G-code generation of NURBS: circular arcs (G2/3), Bézier cubics (G5), and polylines (G1).

Slicing (1) and offsetting, the most complex geometry operation in path planning (2), are already available
in any CAD system in a reliable way. Therefore, there is no need to develop ad-hoc procedures. In particular,
we employ a NURBS-based commercial CAD system (Rhino3D along with its programming environment
Grasshopper) for direct slicing of the model, offset generation, and trimming.

Our main contribution is sticking to the NURBS standard at the last step (3), namely G-code generation,
a possibility overlooked in both the literature and commercial applications. To this aim, we exploit the
possibilities of exiting firmware controlling 3D printers, such as Marlin, incorporating G2/3 (circular arcs)
and G5 (cubic Bézier curves) commands. Since trajectories resulting from offsetting in Rhino3D usually
restrict to circles and polynomial (cubic or quadratic) splines, the exact conversion into G2/3 and G5 code
is readily performed via standard NURBS geometry processing, such as knot-insertion and degree-elevation.

Results
The example of Fig. 1, a rear-view mirror housing designed with SolidWorks and printed with CreatBot

PEEK-300, compares the traditional method (via STL file) and our direct NURBS-based approach. It depicts
the dimensional deviations d of the outer surface of the printed STL/NURBS model from the theoretical
CAD model. The results confirm a considerable improvement in quality thanks to our proposal.

Acknowledments
Research supported by grant PID2019-104586RB-I00, funded by MCIN/AEI/10.13039/501100011033;

and SBPLY/19/180501/000247 by Consejería de Educación Cultura y Deportes (Junta de Comunidades de
Castilla-La Mancha) and grant 2022-GRIN-34077 by Universidad de Castilla-La Mancha, co-financed by
the ERDF (European Regional Development Fund).
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Figure 1: Our approach for generating accurate G-code for AM
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Figure 2: Example comparing traditional AM via STL and our NURBS-based workflow: a) Actual pictures. b) Deviations d
from the exact CAD model (outer surface)
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Point Cloud Denoising Using a Generalized Error Metric

Qun-Ce Xua, Yong-Liang Yangb, Bailin Dengc

aDepartment of Computer Science and Technology, Tsinghua University
bDepartment of Computer Science, University of Bath

cSchool of Computer Science and Informatics, Cardiff University

Keywords: Geometry Processing, Optimization, Point Cloud Denoising

Abstract

We propose a method for feature-preserving point cloud denoising, which jointly optimizes the point
positions and normals. We adopt a generalized robust error metric [1] for normal smoothness; by varying a
parameter of the error metric, we gradually increase its non-convexity to help retain sharp features. We also
develop a numerical solver that guarantees a monotonic decrease of the target function and its convergence.

Method

Given an input noisy point cloud containing n points, with positions {p0
i ∈ R3} and outward normals

{n0
i ∈ R3} (i = 1, . . . , n), we would like to compute the positions {pi} and normals {ni} for the denoised

point cloud. To this end, we optimize {pi} and {ni} simultaneously by solving the following problem:

min
P,N

Efid + wuEunit + wdEdisp + wrEreg. (1)

Here P,N ∈ R3n are new point positions and normals, respectively. Efid is a fidelity term penalizing changes

in positions and normals: Efid = wp

∥∥P−P0
∥∥2+wn

∥∥N−N0
∥∥2, where P0,N0 ∈ R3n are the initial positions

and normals, and wp, wn are user-specified weights. Eunit =
∑n

i=1 ∥ni − ni/∥ni∥∥2 enforces unit lengths for
the new normals. Edisp =

∑n
i=1 ∥ni×(pi−p0

i )∥2 enforces parallel relation between the position change pi−p0
i

and the normal ni for each point. Ereg =
∑

i<j
(i,j)∈N

ϕ(hij) is a robust regularization term, where N denotes the

index set of neighboring points. Here hij enforces smoothness between neighboring normals and their consis-

tency with point positions: hij =
√
(ni · (pi − pj)/Lij)2 + (nj · (pi − pj)/Lij)2 + γ∥ni − nj∥2

/
Lij , where

Lij is the initial distance between pi and pj to account for uneven sampling, and γ is a user-specified weight.

-5c -4c -3c -2c -c 0 c 2c 3c 4c 5c
0

1

2

3

4

5
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5ϕ is a robust error metric proposed in [1] (see inset figure for its graph):

ϕα,c(x) =





(x/c)2/2 if α = 2,

log
(
(x/c)2/2 + 1

)
if α = 0,

1− exp
(
−(x/c)2/2

)
if α = −∞,

|α−2|
α

(
((x/c)2/|α− 2|+ 1)α/2 − 1

)
otherwise.

(2)

As α decreases to −∞, the function ϕα,c(x) becomes less sensitive to large
magnitudes of x. In our formulation, this induces robustness against large
values of hij that indicate sharp features. Thus our formulation removes
noises in smooth areas by reducing hij , while retaining sharp features by allowing for large values of hij . We
solve the optimization problem with α gradually decreased from 2 to −∞.
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Numerical Solver. To solve the optimization problem (1), we adopt an alternating minimization approach:
we first fix P and optimize N, and then fix N and optimize P, and repeat this process until convergence.
For each subproblem, the terms Eunit and Ereg are still non-convex. To further simplify the problem, we
replace each of these terms with a convex quadratic surrogate function that has bounds the term from above
and has the same function value as the respective term for the current variable values. This reduces both the
N- and P-subproblems to minimizing a convex quadratic target function, which can be solved via a sparse
symmetric positive definite linear system. Our approach is an instance of the majorization-minimization
(MM) algorithm [3], which repeatedly constructs and minimize a surrogate function for the true target
function. It can be shown that the MM algorithm guarantees monzonitic decrease of the target function
until convergence [3].

Results

Figure 1 uses two input point cloud models to compare our denoising results with two existing methods,
EAR [2] and RIMLS [4]. It is evident that our method can remove noises while preserving features and
produce better results than the other two methods. Figure 2 compares our method with two alternative
parameter settings for the error metric in Eq. (2), which fix the value of α to 2 or −∞ instead of gradually
decreasing it. The color coding shows the distance to the ground-truth surface. Our result point cloud is
notably closer to the ground truth than those with fixed α values, which demonstrates the effectiveness of
approach that gradually increases the non-convexity of the error metric.

Ours MSLEAR

Ours MSLEAR

Input Ours EAR RIMLS

Figure 1: Comparison on sharp feature preservation. The model ‘Star’
at the top has 24K points with 2.0% Gaussian noise. The ‘Polyhedron’
in the bottom has 43K points with 1.5% Gaussian noise.

su
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Input Our Result

α = 2.0 α = - ∞

Figure 2: Different settings of α on the Gargoyle model
with 20K points and 1.0% Gaussian noise. Our method
with a decreasing value of α (top right) performs
significantly better than fixed α values (bottom).
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An Insertability Constraint for Shape Optimization

Eric Garnera, Jun Wub, Amir Zadpoora

aDepartment of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, the Netherlands
bDepartment of Sustainable Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, the

Netherlands

Keywords: patient-specific implants, insertability analysis, computational design, shape optimization,
structural optimization, path planning, robot-assisted surgery

Abstract

Patient-specific implants, designed according to patients’ unique anatomy, offer a host of benefits over
their generic counterparts. Nonetheless, the design and optimization of these components present several
technical challenges, among them being the need to ensure their insertability into the host bone tissue. This
presents a significant challenge due to the tight-fitting nature of the bone-implant interface.

Insertability analysis, which is the problem of assessing whether a rigid body can be inserted into a tight-
fitting cavity, is ubiquitous in a wide range of engineering applications. In automated tooling, for example,
it is used to plan an interference-free path for inserting robotically-guided parts into mating fixtures [1, 3].
In molding, it is used to ensure that the part can be extracted from the core and cavity without excessive
force [2]. And in engineering design, it is used to design tightly-fitting parts and establish tolerances for
assemblability [4]. In particular, with respect to the design of orthopaedic implants, where a tight fit with
the host bone is usually required, insertability analysis plays a key role in avoiding obstructing geometry
and stuck configurations.

This work presents a novel insertability metric designed to efficiently assess whether a rigid body can be
inserted into a tight-fitting cavity, without interference. In contrast to existing solutions, the metric is fully
differentiable and can be incorporated as a design constraint into shape optimization routines. By exploiting
the tight-fitting condition, the problem of planning an interference-free insertion path is reformulated as the
search for a single interference-free movement, starting from the inserted configuration. We prove that
if there exists any outward movement for which no interference is indicated, then the body can be fully
extracted from or, equivalently, inserted into the cavity. This formulation is extremely efficient and highly
robust with respect to the complexity of the geometry.

We demonstrate the effectiveness and efficiency of our method by applying it to the optimization of two-
dimensional (2D) and three-dimensional (3D) designs for insertability, subject to various design requirements.
We then incorporate the proposed metric into the optimization of an acetabular cup used in total hip
replacement (THR) surgery where geometric and structural requirements are considered.

Results

The proposed insertability metric has proven capable of optimizing a range of 2D and 3D systems
for insertability. In Fig. 1, several uninsertable body-cavity systems (top row) have been optimized for
insertability, while subject to various geometric requirements. In the second row, the body and cavity are
both altered. In the third row, the cavity geometry remains unchanged and the body maximally fills the
cavity (space-filling). In the fourth row, the body is unchanged and the cavity is grown to ensure insertability
(space-making).

Email addresses: E.Garner@tudelft.nl (Eric Garner), J.Wu-1@tudelft.nl (Jun Wu), A.A.Zadpoor@tudelft.nl (Amir
Zadpoor)
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Figure 1: Various 3D body-cavity systems modified for insertability. The original designs (top row) inhibit insertability in
the highlighted areas (left). The modified designs (bottom rows) are presented along with the local shape change from the
original design (right). Red and green refer to added and removed material, respectively. The second row uses a standard
minimum shape change objective. The third and fourth rows use the space-filling and space-making variations of the shape-
match functions.
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Isotropic Point Cloud Meshing using unit Spheres (IPCMS)

Henriette Lipschütza, Ulrich Reitebucha, Konrad Polthiera, Martin Skrodzkib

aDepartment of Mathematics and Computer Science, FU Berlin
bComputer Graphics and Visualization, TU Delft

Keywords: point cloud meshing, surface reconstruction, manifold property, uniform triangle mesh

Abstract

We consider point clouds created by scanning real world models, equipped with provided or generated
normals, and aim for a reconstruction of the underlying geometry. We strive for high triangle quality, as
measured by an edge length close to uniformity across the mesh. The algorithm presented here is based on
a sphere-packing algorithm [7]. It is extended such that, if the input and the normals satisfy certain quality
assumptions, the output of the algorithm is manifold. Our contributions are (full details to be found in [6]):

• presentation of a meshing algorithm that places touching spheres of uniform radius on the input,
• which creates edge lengths close to uniformity and of a guaranteed minimum length,
• as well as manifold output, provided a suitable input geometry and good enough normals.

Theory

Let M be an orientable, compact C2-manifold embedded into R3, which is assumed to be closed and of finite
reach ρ := inf {∥a−m∥ | a ∈ AM ∧ m ∈ M} ∈ R>0, where AM is the medial axis of M consisting of the
points q ∈ R3 fulfilling minp∈M |q − p| = |q − p̂| = |q − p̃| for p̂ ̸= p̃ ∈ M. Then, we can show (see [6]):

Lemma 1. Let p ∈ M be a point and let Np denote its normal. Then, for r < ρ, the image of Br(p) ∩M
under the projection π in direction of Np to the tangent plane TpM is a convex set.

Assume there is a graph G embedded onM and vertices in G connected by an edge have Euclidean distance d.
The connected components remaining after removing G from M are called regions, denoted by R. The
set of vertices and edges incident to a region R ∈ R is called its border, denoted by ∂R. Fix one such
region R ∈ R. Lemma 1 implies a choice of points q1, . . . , qk ∈ ∂R is mapped to points π(q1), . . . , π(qk) in
the tangent plane TpM in cyclic order, for p ∈ R arbitrarily chosen. Hence, the regions can be extracted
correctly (w.r.t. their topology) from the cyclic order in the local projection. Given that the reach criterion
is satisfied and given a suitable normal field, we can thus reconstruct a manifold from the input surface.

Methodology

The user specifies the input point cloud P, a target edge length d, and a splat size s. Here, d defines non-
overlapping virtual spheres of radius d/2 around the vertices of the resulting mesh, i.e., all mesh edges have
a minimum length of d. Following Lemma 1, the user has to choose the parameter d with respect to the
reach of P. For a point p ∈ P and its normal Np, the parameter s defines the radius of a disk Sp with
normal Np, centered at p, called a splat. The algorithm is then given by the following steps:

0. Input: a point cloud P, its normals N , and the user-chosen parameters d and s.

Email addresses: henriette.lipschuetz@fu-berlin.de (Henriette Lipschütz), ulrich.reteibuch@fu-berlin.de (Ulrich
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Table 1: Bottle Shampoo (604,903 input points)
Algorithm |T | Qavg QRMS
Adv. Front 1.209,546 0.8247 16.0
Poisson MG 150,770 0.7204 33.7
RIMLS 1,907,781 0.7055 35.1
Scale Space 1,209,093 0.8248 16.0
Voronoi 1,209,792 0.8241 16.1
Ours 840,453 0.9577 4.5

Table 2: Bowl Chinese (606,320 input points)
Algorithm |T | Qavg QRMS
Adv. Front 1,212,636 0.8045 18.6
Poisson MG 503,458 0.7062 37.1
RIMLS 6,458,589 0.6877 39.6
Scale Space 1,093,339 0.8054 18.7
Voronoi 1,212,636 0.8042 18.7
Ours 2,137,650 0.9485 6.2

1. The user initializes the algorithm by two starting vertices lying sufficiently close to each other such
that a new vertex with distance d to both can be placed on the splats.

2. Iteratively, place a new vertex on a splat such that it has distance d to two currently existing ones,
called parent vertices, and distance ≥ d to all other existing vertices. Stop when no additional sphere
of radius d/2 can be added without intersecting any d/2-spheres around existing mesh vertices. After
the disk-growing finished, all edges of the mesh have length d by construction: Each time we add a
new vertex v, we also insert two edges of length d into the graph G, connecting v to its parent vertices.
The edges will build a set of regions R of an (on average) short border length, representing the surface.

3. Finally, to obtain a triangulation, all regions R ∈ R are triangulated.
4. Output: a triangulation T of M, which is manifold according to the Theory.

In order to efficiently implement these operations, we add two components to the underlying sphere-packing
algorithm [7]. First, we create a uniform grid data structure to efficiently determine the relationship of
introduced vertices and splats on the input points. This data structure also provides estimated normal
information and thereby ensures topological correctness of the resulting mesh. Second, we introduce a
heuristic to speed up the evaluation process of topological decisions to be made when introducing a new
vertex. While it provides topologically correct results in all cases, it reduces the query time from an estimate
of O(

√
n) (where n is the number of vertices currently in the mesh) to a window of constantly many vertices.

Results

For our experiments, we turn to 20 scanned objects provided as part of a surface reconstruction bench-
mark [4]. For a triangle t ∈ T with edge lengths ℓ1(t), ℓ2(t), ℓ3(t) and area A(t), we compute the quality Q(t),
its average Qavg, and the root mean square deviation in percent QRMS as:

Q(t) =
4
√
3A(t)

ℓ1(t)2 + ℓ2(t)2 + ℓ3(t)2
, Qavg =

1

|T |
∑

t∈T
Q(t), QRMS =

100

Qavg

√
1

|T |
∑

t∈T
(Q(t)−Qavg)

2
.

We compare our algorithm to advancing front [2], multigrid Poisson [5], RIMLS [8], scale space [3], and
Voronoi surface reconstruction [1]. See examples in Tables 1 and 2. The results show our method to be able
to surpass the performance of the wide-spread comparison algorithms. For this, our algorithm only needs a
single sweep over the geometry, while the others run several iterations. See [6] for further data and details.
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Abstract

Contemporary architecture strongly relies on freeforms, complex shapes that are easily displayable
through the use of design software tools. Indeed, software-assisted shape exploration satisfies designers,
who are driven mainly by aesthetic purposes. However, when it comes to to feasibility freeforms are still
difficult to deal with. Transforming a geometric concept in a reliable product at a building scale is a multi-
constrained optimization problem. Several hard constraints arise from fabrication requirements (statics,
lighting, space prescriptions), as expression of customer (cost, economy of materials) or society demands
(environmental impact, pollution). We pursue the ambition of putting all the pieces together. In this poster,
we describe a geometric deep learning method to edit freeform shapes in order to minimize the structural
compliance and preserve the original design intent. The task is ideal for geometric deep learning [2], since
the hidden relationship of different information layers concur to solve a hard problem with a geometrical
flavour. In particular, we developed a statics-driven shape optimization tool for grid shell structures. Grid
shells are 3D networks of straight beams rigidly jointed at the nodes, particularly known for the efficiency
on covering large amounts of space with minimum use of materials.

Our learning model takes as input grid shells encoded as triangle meshes, exploits different geometric
input features and predicts optimal shapes through vertex displacements: Figure 1 presents the pipeline,
and Figure 2 shows an example. Hidden layers follow the GATv2 graph attention paradigm [1] on nearest
neighbor graphs in the feature space, weights are fixed according to a differentiable structural strain energy
employed as a training loss. We are also working on a graphical user interface that allows the user to control
some parameters. The user can drive the procedure with a videotape-style set of buttons (Play, Pause,
Rewind, Replay).

Our research is framed into Architectural Geometry [4], a multidisciplinary branch of research that
finds geometric solutions to building feasibility problems. In this setting we propose a fabrication-aware
design paradigm, which takes into account functionality criteria from the initial design phase, usually led
by aesthetic purposes only. This shortens the fabrication pipeline, as it prevents intermediate outcomes to
be sent back to the designer, saving hence time and improving results.

Future work includes the development of more refined means to control the shape, including both im-
proved user involvement and mathematical instruments. Indeed, the user could enter the execution loop not
only by changing parameters, but also by manual shape modifications: adequate tools in this sense are cages
and control structures. Moreover, the input design preservation could be controlled also through sophisti-
cated regularizers, based for instance on topological descriptors that analyze the preservation of geometric
features [3].
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The method and the results, even in comparison with some state-of-the-art tools, are the subject of a
paper which is currently submitted to a top-rank journal. We reserve the right to add further development
in the poster, if available on the date.

Results

Displacement Intermediate Output Output

Loss

Input shape Geometric features

. .
 .

Enc GAT RO

Figure 1: The input mesh, augmented with a set of geometric features (vertex coordinates, normals, curvature, geodesic
distances) is fed to a network for 3D deep learning. The network is made up of an encoder (Enc), attention-based graph
convolutional layers (GAT), and a MLP readout function (RO) which outputs learned vertex displacements. The network
learns the optimal vertex displacements with respect to a differentiable strain energy loss, after a gradient descent procedure
on the single mesh itself.
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Figure 2: (a) A 3D mesh representing the first design of a grid shell, and (b) the deformation it would undergo due to Service
Load, in false colors; deformation is expressed in meters. (c) The optimized grid-shell produced by our 3D deep learning model,
which preserves the design intent while reducing deformation (d).
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Abstract

We propose an algorithm that solves the least-squares approximation problem with n-arc splines given
a fixed n and a discrete, ordered sequence of m points in R3. At the company MACK Rides, arc splines
are used to describe roller coaster rails that are manufactured as bent metal tubes. We approximate spatial
freeform curves given by their equidistant sampling, using arc splines with the least number of arcs within
some given error tolerance. We achieve this by solving the problem for an increasing number of arcs until
the approximation error falls below the given bound.

As Hoschek [1], we represent n-arc splines by the intersections of their arc end tangents and non-linear
conditions for the arc end points, see Figure 1. Using simple examples in the Euclidean plane, we demonstrate
how our method approaches the optimal solution using a two-layered approach, first finding the least-squares
approximation for any given fixed segmentation of the input, and then optimizing the segmentations using
a generic global optimization scheme. Using several data sets, we show that our method can be used on a
wide range of input shapes, as long as each individual arc covers less than a semicircle. Depending on the
input data, very biased segmentations can lead to individual arcs turning through nearly 180◦ such that the
control polygon diverges during optimization. We handle this drawback of the representation gracefully in
our current implementation.

p0 = m0 = b0

p1 = b1

m1 = b2

p2 = b3

m2 = b4

p3 = b5

p4 = m3 = b6

Figure 1: An arc spline with n = 3 and its control polygon
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Figure 2: logarithmic plot of the least-squares error for increasing number of arcs n

Results
Figure 2 shows a logarithmic plot of the approximation error of our n-arc approximation algorithm for

various exemplary inputs, one of which is shown in Figure 3 together with two n-arc spline approximations.
For both the helix and the planar clothoid, our algorithm generates n-arcs with even segmentations, which
suggests that the discrete clothoid approximation by Meek and Walton [2] is optimal. For the spatial
clothoid with both linearly increasing curvature and torsion, we found that the approximating n-arc puts
more emphasis on the part of the curve with higher torsion, leading to an uneven segmentation with strictly
decreasing arc-lengths of the circular arcs. In case the input itself is an n-arc spline and given enough arcs,
our algorithm reconstructs the input to within floating point accuracy. The remaining examples demonstrate
that our algorithm performs equally well for more involved inputs as well as real-world data, showing similar
error convergence for increasing n.

Figure 3: G2 clothoid spline example (left) and its approximating 5-arc (center) and 9-arc (right) and their curvature comb.
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Abstract

We develop the concept of scenic paths in a 2D space with respect to two points which have weights
associated with them. Subsequently, we propose algorithms to generate scenic routes a traveller can take,
which cater to certain principles which define the scenic routes. Following are the contributions of this paper:
(1) mathematical formulation of a scenic point, (2) introduction of scenic routes formed by such scenic points
in two-class point configurations in 2D spaces, and (3) design of scenic route generation algorithms that fulfil
certain defined requirements.

1. Motivation and proposed solution

In a given 2D space, we can have points that have different levels of importance. In this paper, we
indicate relative levels of importance by assigning the points a weight. Consider a red point P1 and a blue
point P2, each point having its own weight (w1 and w2 respectively). A scenic point P with respect to a
given red point and a given blue point is a point from where the distance of the points from the scenic point is
inversely proportional to the weight of the point. Note that this condition (when weights are substituted by
heights of landmarks at those points) roughly translates to the apparent (perceived) height of the landmark
at P1 being equal to the apparent height of the landmark at P2, where d1 is the distance from P to P1 and
d2 is the distance from P to P2.

w1

d1
=

w2

d2
(1)

The locus of the point P is a circle. We are given n red points and m blue points as inputs, and the arcs
and intersection points of the circles resulting from the scenic point loci for each read blue pair gives rise to
a graph, which we attempt to traverse through efficiently via a route satisfying the given set of requirements
to the highest possible degree in the below listed order of importance: 1. Completeness: Travelling on
the route provided by the algorithm must allow one to have a view of all red-blue pairs. 2. Only scenic:
The route must consist of only scenic edges. 3. Minimal route length: The total route length should
be as low as possible. 4.Minimal repeated edges: A route must contain a minimal number of repeated
edges (stretches of paths that must be traveled more than once (repeated) to complete the entire route). 5.
Minimal number of edges: A route must not have a large number of edges.

We have three algorithms (All Curve Umbrella (ACU), All Curve Convex Hull (ACCH), and Dense Point
Expansion (DPE) algorithms) which generate routes that try to satisfy the aforementioned requirements.
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Figure 1: a) Points organised in a grid, with alter-
nating red and blue points, and the resulting scenic
graph. b) Route generated by the ACU algorithm
on the graph c) Route generated by the ACCH al-
gorithm on the graph d) Route generated by the
DPE algorithm on the graph

Algorithm RL NoE NoRE RE%

ACU 7.42 48 4 8.33
ACCH 7.7 48 12 25
DPE 6.15 36 16 44.44

Table 1: Results for experiments on graph
in Fig. 1 (Total Path length 558.96, No. of
edges: 304)

Results

We have performed experiments on multiple graphs, and a subset of the results have been provided in
this abstract. The Algorithms perform well on the metrics relevant to the requirements mentioned in the
Motivation Section. (Legend for table headers: (RL: Total Route Length, NoE: Number of Edges in
route, NoRE: Number of Repeated Edges in route, RE: Repeated Edge Percentage))

Figure 2: A scenic route on the area of the Great
Pyramids, generated using the ACU algorithm
(The edges included in the generated route are in
pink, and the rest of the scenic paths are in green.)

Algorithm RL NoE NoRE RE%

DPE 194.71 41.59 11.12 27.07
ACU 218.29 46.13 3.77 8.03
ACCH 209.99 43.33 10.5 24.17

Table 2: Random graph experiment results (over
100 graphs, avg. number of nodes: 82.96, avg.
number of edges: 176.96, avg. total edge length
of graph: 41302.61)

2. Conclusion

In this work, we introduce the concepts of scenic points, scenic paths and scenic routes in two-class
weighted point configurations in 2D spaces, a characterization of the properties of a scenic route, and an
analogy of these conditions in a real world scenario. We present three algorithms to generate scenic routes,
and analyze the routes generated by these algorithms. We finally picked some real-world scenarios for which
we generate scenic routes. The full manuscript of the work can be found here[3].
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Abstract

Jittor [1] is a deep learning framework that leverages just-in-time (JIT) compilation to achieve higher
performance and system customization. We introduce the concept of meta operators, which are similar to
Numpy operators and can support flexible real-time compilation of operators into high-performance CPU or
GPU code. Jittor utilizes unified graph execution, an optimized approach for executing computation graphs
that combines the ease of use of dynamic graph execution with the efficiency of static graph execution.
Jittor also offers operator fusion, cross-iteration fusion, and unified memory management as additional
improvements. The paper also introduces JNeRF [5], a model zoo built upon Jittor that supports efficient
NeRF models for novel view synthesis and 3D reconstruction tasks. Results demonstrate the fast training
capabilities of JNeRF and showcase its high-quality rendering and reconstruction output.

Method

Jittor is a fully just-in-time (JIT) compiled deep learning framework. With JIT compilation, we can
achieve higher performance while making systems highly customizable. Jittor provides classes of Numpy-
like operators, which we call meta-operators. A deep learning model built upon these meta-operators is
compiled into high-performance CPU or GPU code in real-time. To manage meta-operators, Jittor uses a
highly optimized way of executing computation graphs, which we call unified graph execution. This approach
is as easy to use as dynamic graph execution yet has the efficiency of static graph execution. It also provides
other improvements, including operator fusion, cross iteration fusion, and unified memory.

A meta-operator is a general operator, which when specialized gives a class of operators with common
properties that make them particularly amenable to optimization. Deep learning frameworks usually provide
many operators to make it easy for users to build learning models. In fact, many of them do similar things,
and can be expressed as specializations of more general higher-level operators. In particular, reindex is a
very useful meta-operator which provides an arbitrary one-to-many mapping between its input and output.
Various specialized operators such as broadcast, pad, and slice are particular forms of this operator, and
belong to the reindex operator class. Another important meta-operator is reindex-reduce, which provides
a many-to-one mapping. Sum and product are particular examples of reindex-reduce operators. The third
meta-operator class comprises element-wise operators. Each has one or more matrix inputs, which should
all have the same shape; the output matrix also has this shape. Results are computed element by element.
Matrix addition is an example of a binary element-wise operator.

Unified graph execution is another major contribution of Jittor. According to the execution method of
computational graphs, deep-learning frameworks can be based either on a static graph execution (also called
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a define-and-run approach) or a dynamic graph execution (define-by-run, eager execution). Static graph
based frameworks are efficient and easy to optimize, and dynamic graph based frameworks are easy-to-use
and flexible. As an alternative, we propose our unified graph execution approach. Unified graph execution
provides an imperative style interface which has the same flexibility as a dynamic graph. And it is also as
efficient as a static graph.

Based on Jittor, we have proposed many model zoos that support different tasks, including an efficient
heterogeneous NeRF[2] model zoo, JNeRF[5]. The emergence of NeRF brings a wide range of possibilities
for real-world 3D reconstruction and rendering. Still, there are problems to be solved. Previous works have
improved NeRF in the sampling technique, the position encoding method, the network structure, etc., but
these improvements are difficult to combine conveniently due to different modules is not well decoupled.
On the other hand, recent work [3] significantly speed up the core GPU computation of NeRF, leaving the
deep learning framework overhead noteworthy. So some of them choose to replace the frameworks with pure
CUDA programs, which limits the maintainability and extendability. Therefore, we propose JNeRF[5], a
unified, efficient, framework-friendly NeRF model zoo. JNeRF includes many well-known NeRF works, such
as Instant-NGP [3], NeuS [4], etc.

Results

To show the ability of JNeRF fast training, Fig.1 shows the rendering results of JNeRF Instant-NGP
after training for 0.5 seconds, 1 second, and 5 seconds on RTX3090. It can be seen that JNeRF can get a
clear result after 5 seconds of training. Fig.2 shows mesh model and colored model results reconstructed by
NeuS [4].

Figure 1: Rendering results of Instant-NGP implemented by JNeRF after training for different times on RTX3090. Left:
training for 0.5 seconds. Middle: training for 1 second. Right: training for 5 seconds.

Figure 2: Mesh model reconstructed by NeuS and colored model results.
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Abstract

The cutting-edge numerical methodology of isogeometric analysis [1] offers the potential to seamlessly
integrate Computer-Aided Design and Computer-Aided Engineering, effectively bridging the gap between
the two domains. Most Computer-Aided Design systems focus exclusively on the boundary representa-
tion of models during the design phase, whereas a spline-based mapping is essential in the analysis stage,
commonly referred to as domain parameterization. However, generating analysis-suitable parameteriza-
tions from existing boundary representations continues to be a considerable challenge in the isogeometric
design-through-analysis process, especially for computational domains featuring intricate geometries, such
as high-genus cases.

To tackle this challenge, we propose a cross-field-based multi-patch parameterization method for compu-
tational domains. Initially, we employ the boundary element method to solve vector field functions across
the computational domain. Subsequently, we create a one-to-one mapping between the vector field and
the cross-field, thereby obtaining the cross-field. By analyzing the singular structure of the cross-field,
we ascertain the position information and topological connection relations of singularities and streamlines.
Furthermore, we introduce a simple and effective technique for computing streamlines.

We introduce a novel segmentation strategy for dividing the computational domain into several quadri-
lateral NURBS sub-patches. After establishing the multi-patch structure, we devise two techniques for
generating analysis-suitable multi-patch parameterizations. The first technique expands upon the barrier
function-based approach [2], while the second technique yields smoother parameterizations by including the
control points at the interfaces of the sub-patches within the optimization model.

Numerical experiments showcase the effectiveness and robustness of the proposed method, highlighting
its potential to enhance the isogeometric analysis process.
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Figure 1: The overall workflow of our method

Figure 2: Left: Domain partition; Middle: Fixed-interface method; Right: Moving-interface method
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Abstract

The idea of hexahedral mesh generation based on 3D Integer-Grid Maps has been around for more
than a decade now [7], generalizing ideas from the 2D quadrilateral mesh setting [5, 2]. This approach
is highly promising, because—at least in theory—it is very flexible, versatile, and expressive, conceptually
enabling the generation of boundary-aligned, feature-respecting, anisotropic, adaptively sized, semi-regular
hexahedral meshes of high quality. It consists of multiple stages and subproblems, such as the generation of
a global seamless parametrization of a given object, possibly guided by a 3D frame field, the determination
of suitable integer values for discrete degrees of freedom that control mesh resolution and connectivity, the
reparametrization to an integer-grid map respecting these values, and the final extraction of a hexahedral
mesh from the map.

For more than ten years, however, this concept has been notorious for lacking robust solutions for many
of its subproblems. And further, even the non-robust best-effort approaches proposed for these so far, had
often not been available in form of open source implementations facilitating further research and exploration.

Recently, in two projects, one hosted at the University of Bern, one hosted at Osnabrück University, we
have been able to close multiple of the robustness gaps of this integer-grid map based hexahedral meshing
pipeline. These solutions are reported in several recent articles, addressing in particular:

• Singularity Meshability [6],

• Numerical Sanitization [4],

• Volumetric Partitioning [4],

• Volumetric Quantization [3].

Implementations of these solutions are now made available to the community in the form of four open
source libraries:

• libAlgoHex (https://lib.algohex.eu),

• TrulySeamless3D (https://github.com/HendrikBrueckler/TrulySeamless3D),

• MC3D (https://github.com/HendrikBrueckler/MC3D),

• QGP3D (https://github.com/HendrikBrueckler/QGP3D).
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Figure 1: Overview of the algorithmic pipeline, from tetrahedral mesh input to hexahedral mesh output.

In a coordinated effort, these libraries have been integrated in such a manner that they can readily be used
to execute the entire pipeline from input tetrahedral mesh to output hexahedral mesh, as illustrated in
Figure 1.

We hasten to emphasize that a few subproblems remain that lack a robust solution so far (especially
globally meshable singularity structure determination and integer-constrained remapping). For these, meth-
ods are included in this collection of integrated libraries as well, of best-effort type, so as to enable the use
and exploration of the entire pipeline. These remaining challenges are the topic of ongoing research, with
the goal of ultimately establishing a pipeline that is fully reliable end-to-end. We hope that the availability
of this implementation can foster further work towards this goal.

Results

Using this collection of libraries, significant advances in terms of robustness can be observed. For instance,
looking at the challenging HexMe dataset [1] of hexahedral meshing problem instances, now a majority (58%)
of the instances can be successfully processed, assuming a sufficiently fine mesh resolution is targeted. While
the remaining gap towards full success illustrates the above point that further research is necessary, note
that only around 10% were achievable with a previous internal implementation without the above mentioned
recent advances.
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Abstract
We consider finite sets of magnetic spheres {s1, . . . , sn} made from neodymium. All spheres have the same
radius r > 0 and are identically magnetized. Placed in R3, each sphere si is characterized by the coordinates
of its center ci and the direction of its magnetization Mi, which is pointing along the line of force through
inifinity. These spheres can be adjusted into small configurations like pearls on a wire or circles where the
spheres’ centers form a regular n-gon. Especially the circular configurations can be used to build more
complicated and highly symmetric configurations in the plane or in space.

Formulation of minimization problem
Magnets can be made in various sizes and shapes. Since the outer magnetic field of a (macroscopic) magnet
in shape of a sphere coincides with the field of a dipole everywhere, the consideration of magnetic spheres is
reasonable, since there is a suitable mathematical model of this kind of magnetic fields. In order to derive
a formulation for the interaction energy of the complete set of spheres, first, the magnetic field at position
p produced by a point dipole m is formulated as

B(m, p) =
µ0

4π

(
3〈m, p〉
|p|5 p− 1

|p|3m
)
,

where µ0 denotes the permeability of free space which is constant. This leads to the formulation of the field
of some magnetic dipole mi evaluated at the location of some other dipole mj , where pi, pj denote their
locations:

Bi(pj) =
µ0

4π

(
3〈m, pj − pi〉
|pj − pi|5

(pj − pi)−
1

|pj − pi|3
mi

)
.

The interaction energy between dipole mj and and the magnetic field of mi is given by

Uij = −〈mj , Bi(pj)〉 =
µ0

4π

( 〈mi,mj〉
|pj − pi|3

− 3
〈mi, pj − pi〉〈mj , pj − pi〉

|pj − pi|5
)
,

which is symmetric in i and j, i.e., Uij = Uji for all i 6= j, i, j ∈ {1, . . . , n}. Therefore, the total interaction
energy of all spheres in the considered set is given by U =

∑
i<j 2Uij . For further details, see [1].

The spheres have to fulfil two different assumptions:

• Spheres do only touch, never interpenetrate. Hence, for pairwise distinct spheres i, j: |cj − ci| ≥ 2r.

• Since the magnetizations are supposed to be of equal magnitude, they are normalized: |Mi| = 1.

The optimization problem results in minimizing U with respect to the aforementioned constraints. Such
a configuration of spheres is said to be in stable equilibrium if the configuration returns to the original
placement after small pertubations.
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Figure 1: From left to right: Section of Archimedean 4-8-8 tiling; section of Archimedean 4-8-8 tiling, directions of magne-
tizations indicated by colored spheres; equilibrium in 3-spaces forming a saddle shaped 1-skeleton; approximation of a single
building block of the triply periodic Schwarz P surface.

Approximations of surfaces

Starting from spheres divided into rings of consisting of different numbers of spheres, they can be assembled
in various ways. See [3] for a collection of Archimedean tilings which are an interesting collection of examples
since all edges are of the same length and can therefore be replaced by two touching spheres. Disturbing for
example a section of the 4-8-8 tiling results in a saddle shaped configuration as depicted in Figure 1, third
image from the left which appears to be stable.

Another way to arrange a set of rings is inspired by triply periodic minimal surfaces. An approximation
of the Schwarz P surface is shown in Figure 1, on the very right hand side. Here, the placement of spheres
and the number of spheres per circle is inspired by the symmetry group of the Schwarz P surface.

Since examples like the mentioned ones are stable in the above sense, minimizing the aforementioined
energy does not give additional pairs of touching spheres. Hence, in addition to the characterization by the
spheres’ centers and the directions of magnetization, to each such configuration a graph can be associated.
Every vertex represents a sphere and two vertices are connected if and only if the spheres the vertices
represent touch. In case of a stable configuration, an embedding of this graph arises from the optimization
problem introduced earlier.

Open questions

The observations described above give rise to various questions. A slightly deformed circle consisting of n
spheres in the plane is represented in terms of the graph introduced by a n-gon deformed correspondingly.
Considering the directions of magnetization, they appear to be tangential to a (discrete) curve trough the
spheres’ centers. Hence, a natural question is whether there is a similar interpretation in the 3D case as
well or how sufficiently many information can be derived to span at each vertex a fulldimensional tangent
space. Since the configurations presented in Figure 1 come from classical smooth surfaces, it is worth to be
investigated whether there is a discrete surface that can be derived from the given graph and vector field
possibly similar to the ansatz presented in [2].
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Abstract

An urban digital twin (UDT) is the virtual representation of real assets, processes, systems and subsys-
tems (e.g., transportation, energy distribution, water usage, population, education, health, cultural heritage,
etc.) of a city. By using and integrating heterogeneous data, UDTs actually allow monitoring the current
status of cities and predicting/anticipating possible complex scenarios [1]. We focus on the design and
development of the geometric layer of UDTs, that is the 3D digital representations of urban morphology
and physical structures (i.e. buildings), properly enriched with heterogeneous semantic information. Our
method aims to build a functional geometric model of the city, exploiting at best the available data, trying
to achieve a representation that is able to support geometry-related queries [3].

Method

Our approach exploits 2D information from OpenStreetMap (OSM) and the 3D elevation data from
Digital Elevation Models (DEM). Both Digital Terrain Models (DTM) and Digital Surface Models (DSM)
coming from LiDAR techniques are taken into account to cross-reference both buildings and streets from
OSM with elevation data. First, the procedure resolves geometric and topological issues in building boundary
polygons; then, such polygons and street segments are added as constraints to triangulate the area between
buildings. A 2D constrained Delaunay triangulation is generated and, for each point, its elevation is set
according to the DEM: the elevation of points belonging to buildings is an average of the DTM cells in which
the building is contained, and the height of each building is set equal to the average difference between
corresponding DSM and DTM cells containing the building and extrude the building base accordingly.
Finally, the extruded boundary of the buildings are closed by triangulating the corresponding polygon.

When the 3D triangulated surface is ready, we semantically enrich the model by importing elements from
OpenStreetMap. Street edges and building triangles are labelled with the corresponding OpenStreetMap
indexes. This creates a biunivocal association between portions of the geometry and OpenStreetMap entities
and their attributes to be further interrogated and analyzed.

Results

The potential of our approach is shown by generating the geometric layer for the digital twin of the Italian
city of Matera and Catania (see Figure 1). Such models are used to answer specific objectives posed by the

Email addresses: andreas.scalas@ge.imati.cnr.it (Andreas Scalas), brigida.bonino@ge.imati.cnr.it (Brigida
Bonino), chiara.romanengo@ge.imati.cnr.it (Chiara Romanengo), tommaso.sorgente@ge.imati.cnr.it (Tommaso
Sorgente), daniela.cabiddu@ge.imati.cnr.it (Daniela Cabiddu), michela.mortara@ge.imati.cnr.it (
Michela Mortara), simone.pittaluga@ge.imati.cnr.it (Simone Pittaluga), michela.spagnuolo@ge.imati.cnr.it (Michela
Spagnuolo)

IGS 2023 Poster

IGS2023 Poster

28



two municipalities, such as computing the in light/shadow areas given date and time, querying morphology-
related information about streets, and supporting processes of monitoring the level of occupancy of some
points of interest [3].

(a) Matera (b) Catania

Figure 1: Urban 3D models generated by our method for the two pilot cases of Matera and Catania, in
Southern Italy. Yellow elements are labeled as “building”, while black segments are labeled as “street”.

Ongoing and future works

We are currently working on including further salient entities, such as squares, green areas, public
and commercial services, urban furniture and facilities, and others. Moreover, we are going to improve our
modeling approach to be suitable for simulation of environmental parameters, such as air pollution prediction
or rainfall runoff. Finally, additional efforts are currently put on designing new methods to generate top
quality 3D models of urban areas starting from laser scanner acquisitions [2] (see Figure 2).

(a) (b) (c)

Figure 2: From laser scanning acquisition to 3D model. An example for the pilot case in Matera. (a) Point
cloud from mobile laser scanning acquisition. (b) 3D triangulated mesh. (c) Detail of the triangulated mesh.
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Abstract

Consider a 2D coordinate space with a set of red and a set of blue points. We define a scenic point
as a point that is equidistant to a red point and a blue point. The set of contiguous scenic points form a
scenic path. The perpendicular bisectors to the line joining a red point and a blue point forms a scenic path
between the red point and the blue point. A scenic route is a traversal made from scenic paths. In this
paper, we address this novel problem by (i) designing algorithms for scenic route generation, (ii) studying
the algorithms’ different properties and (iii) analysing the routes generated by these algorithms. Scenic
routes have applications in geo-spatial visualizations and visual analytics.

Introduction

Our Motivation

Humans have an implicit awareness of scenic beauty when traveling over various routes. The question
arises: How do we transfer our scenic awareness over to two-dimensional data? Here, we define scenic beauty
to be a uniform and balanced view of points of interest. A scenic point provides us with an equidistant view
of at least two points of interest with the purpose of achieving balanced views.

The onus in this work is to show the nature of scenic routes in a two-dimensional environment. We
consider points of interest to be either red or blue colored, with scenic beauty being an equidistant view
of a red and a blue point. In particular, we introduce scenic routes to pairs of (red, blue) points and give
illustrative situations where such routes are viable in the real world.

Consider the Giza Necropolis as shown in Fig. 1, specifically the pyramid of Khufu and the pyramid
of Khafre. Treating the tops of the two pyramids as points of interest (blue), we can draw a scenic route
(pink) through the necropolis. Highlighted in green are two city roads on the scenic route, such points are
accessible to the viewer and give a scenic view of the pyramids.

Scenic Route Problem

Consider a rectangular region with N red and M blue points. We define a scenic point as a point that
is equidistant to a red point and a blue point in a pair of red-blue points. Each point on the perpendicular
bisector of a line joining a pair of red-blue points is scenic. Therefore, the entire perpendicular bisector is a
scenic path. Scenic routes are generated by putting together segments of these bisectors/scenic paths. The
intersection points of multiple bisectors offer multiple scenic views as they produce an equidistant view to
multiple pairs of points. Moreover, these intersection points offer opportunities to change directions, i.e.,
move from one bisector to another while maintaining a scenic view.
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Figure 1: The Giza Necropolis Figure 2: Red/Blue points, bisector intersection points,
and the corresponding scenic graph (in pink and blue).

This work primarily deals with methods to find scenic routes in two-dimensional space. Since there can
be multiple ways to traverse over these scenic paths, we define the following set of requirements for scenic
routes, in decreasing order of importance: 1. Only Scenic: The route must consist of scenic paths. 2.
Completeness: Travelling on the route must allow one to have a view of a large number of (preferably all)
red-blue pairs. 3. Minimal Edges: A route must not have a large number of edges. Traveling on a route
must allow for long, uninterrupted stretches of scenic points. 4. Minimal Repeated Edges: A route
must minimize the number of repeated edges. Repeated edges are defined as stretches of bisectors that must
be traveled multiple times (repeated) to complete the entire route.

We present two algorithms, the Min-Max Hull algorithm and the Densest Line algorithm. The two
algorithms perform differently on each of the requirements, with densest line providing routes that have
long, view-dense stretches, while the Min-Max Hull algorithm is better if one wants to have a shorter route
that gives a large number of views. We run our algorithms on multiple graphs and compare the performance
of the generated routes against the scenic requirements. We provide an example of a route (in pink and
blue) generated using the densest line algorithm in Figure 2.

Conclusion

In this paper, we introduced the concept of scenic routes in two-class point configurations in 2D spaces
and a characterization of the properties of a scenic route. We present two scenic route generation algorithms
and analyze the routes generated by these algorithms. Finally, we generate scenic routes on the Capitol Hill
area. Ours is a preliminary work on this problem that opens up exciting theory and practical implementation
challenges to design and analyze scenic route algorithms. The full manuscript of the work can be found here
[4].
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Abstract

The growing interest in soft robotics has underscored the need for novel simulation techniques. Soft robots
are gaining popularity because of their inherent compliance, safe human-robot interaction, and adaptabil-
ity. However, simulating these robots poses numerous challenges due to their infinite degrees of freedom,
large deformations, non-linear material, and non-intuitive inputs for traditional simulation methods. Con-
ventional simulation approaches have struggled to handle complex geometries and nonlinear deformations.
In response, this research aims to bring the accuracy of traditional Finite Element Methods to geometry-
based simulation frameworks which focus more on surface representation and processing. Geometry-based
frameworks have demonstrated their speed, robustness, and intuitive nature in modelling interactions and
actuation, particularly for soft robotics. Nevertheless, current methods either handle only linear materi-
als or oversimplify the models to maintain speed at the expense of accuracy. This research investigates a
novel method for implementing non-linear material capabilities with negligible computational overhead for
geometry-based methods. A local-global approach is used, where the behaviour of an element is determined
locally, and stitched back with other elements in a least-square global step. Locally an element follows a
blending step where a multi-objective function determines its desired shape which can be modified in real-
time without touching the global stiffness matrix. This function can consider desired behaviours such as
expansion for pneumatic actuation or contraction for shape memory alloys, and stiffness of an element. Ma-
terial curves are fitted with a polynomial expression, which can determine the tangent modulus, or stiffness,
of a material based on strain energy. The moduli of all elements are compared to determine the relative
shape factors used to establish an element’s blended shape. This process is done dynamically to update
a material’s stiffness in real-time, for any number of materials, regardless of linear or non-linear material
curves.

Results

The geometry-based formulation allows for setting a target shape VB
i for each element. When there

are two different materials in consideration, an element’s stiffness is formulated based on how much it cares
about its original shape compared to simply conserving its volume. As such, if one element cares about its
original shape more than another, it will better maintain its shape during the energy minimization process
thus making it act stiffer. Fig. 1 a), depicts how the shape factor ω is used for materials of different stiffness
and the mathematical equivalent is found in Equation 1.

VB
i = ωi ∗VR

i + (1− ωi)V
v
i . (1)

The stiffness of an element is done within the blended shape by selecting a rigidity shape factor ωi

between a rigid shape VR
i and a volume conserving shape Vv

i . The mechanical stiffness is typically reflected
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Figure 1: Visualization of physical properties with relation to shape factor. A larger shape factor results in less deformation,
similar to having a larger Young’s Modulus.

Figure 2: Cheetah TPU(white) and NinjaFlex TPU(orange) filaments in tension at 100% elongation. a) Test set-up b)
Experimental results; c) Hyperelastic Abaqus results; d) Linear simulation of our framework; e) Hyperelastic simulation in our
framework.

through the Young’s Modulus, E, of the material. However, the geometric definition of rigidity has a
normalized scale from 1 for perfectly rigid, to 0 for an element that solely cares about its volume; requiring
a mapping function, Γ(RM ) 7→ RG, to reflect the mechanical implications accurately. The geometric ratio
of the two shape factors (i.e., RG = ωx/ωy) corresponds to the desired ratio of its physical counterpart
(i.e., RM = Ex/Ey), where Ex and Ey are the Young’s modulus of two theoretical materials. Elements are
given their own relative stiffness ratio ωi for the current time-step by comparing their current stiffness to
the stiffness of other elements. The process assumes if all elements are equally stiff, then ω = 0.5. It is to
be noted that the geometric formulation’s least square problem has a constant global matrix and does not
need to be updated to reflect new material properties. To prevent instability and error accumulation, an
intermediate shape VP

i is constructed based on the initial shape of an element and the current deformed
shape as the new reference point in the shape blending equation. The process is visualized in Fig.1 b).
Equation1 is then modified such that VR

i is replaced by VP
i defined in Eq.2. The updated formulation is

Eq.3.

VP
i = (1− α)VR

i + α ∗Viv, (2)

VB
i = ωi ∗VP

i + (1− ωi)V
v
i . (3)

Preliminary results of the proposed method can be seen in Fig.2 where a tensile test is performed with
two different 3D printed thermoplastic polyurethanes (TPU) filaments and the relative elongation, denoted
by the black line, is compared. A simulation with linear material properties and another with hyperelastic
properties using the geometric approach are compared to experimental results and a hyperelastic simulation
performed in Abaqus. Abaqus took 27.2 seconds for the simulation with an error of 11.6%, while our
framework took 18.3 seconds (1.49x faster) with an error of −1.3%. It is to be noted the Abaqus calculation
time increased with deformation, while the geometry approach remained constant throughout.
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Abstract

Due to their built-in refinability, subdivision algorithms are a promising tool for the construction of
function spaces in the context of isogeometric analysis. In this poster we summarise the opportunities and
challenges of this approach for the surface and volume cases. In particular, we highlight the challenges in the
areas of algorithms, analysis, and implementation. In the area of algorithms, for the 2-dimensional case, it
is necessary to (re)discover subdivision algorithms with subdominant eigenvalues 1

2 . For the 3-dimensional
case, to the best of our knowledge, there are no subdivision algorithms with such properties, and not even
with equal subdominant eigenvalues, which leads to an eigenshell that converges first to a plane and then
to a line. In the area of analysis, the 2-dimensional case is largely done, but the 3-dimensional case is
completely open as there is no generalisation of the discrete Fourier transform to 3-dimensional objects.
Finally, the implementation for quadrature to solve PDEs is non-trivial in the 2-dimensional case and even
less so in the 3-dimensional case. This is the focus of the rest of the poster.

Specifically, to construct the Galerkin system, it is necessary to compute integrals on subdivision surfaces
and volumes. Since errors in the integration affect the accuracy of the simulation, these integrals should be
computed efficiently and with high precision. In this poster, we first discuss integration strategies for the
overall integration, including adaptivity and error control, as well as for the integration around irregularities.
With our ‘finite-capping-strategy’ we approximate the infinite fragmented patches around an irregularity by
Bézier patches. In doing so we respect the smoothness to the outer patches and use the remaining degree of
freedom to interpolate the central point. For Bézier patches of higher order is is also possible to interpolate
even more points. We also compare this strategy with other strategies (see Figure 1) like the ‘brute-force-
strategy’ (ignoring the irregular part) and the ‘naive-stragegy’ (using gaussian quadrature directly on the
infinite fragmented patch).

We then show the convergence speed of the simulation based on high-precision integration in a benchmark
problem: At first we generate a uniform n-gon for n = 3, . . . 8 in R2. On this physical domain we construct
an elliptic PDE and approximate it with 7 steps of uniform refinement. For each step we measure the
L2-error and the L∞-error. For n ̸= 4 we get an approximation speed of λ3n for the L2-error and λ2n for
the L∞-error, where λ is the subdominant eigenvalue of the subdivision algorithm (see Figure 2). For n = 4
we get a convergence speed of λ4n for both the L2- and the L∞-error.

Since irregularities slow down the convergence speed of the simulation, our experimental results lead to
the assumption that we need the high resolution of the refinement just around the area of the irregularity.
Therefore, we present further experimental results for an adaptive (in the sense of basis functions) algorithm
using truncated hierarchical B-Splines and show that adaptivity is a useful tool to overcome the lack of
convergence speed (see Figure 3).
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Figure 1: (left) Comparison of different integration methods. On the x-axis one can see the tolerance given to the algorithm
and on the y-axis the amount of rings which means the amount of refinement steps around the irregularity for the given error
tolerance. (middle) An infinite fragmented patch and the control points, by which it is influenced. (right) Approximation by
the finite-capping-method respecting the smoothness to the outer patches (red bars) and interpolating the central point.
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Figure 2: Measured L∞-error (left) and L2-error (right) of an elliptic PDE on a pentagon in R2.

Figure 3: Solution of an elliptic PDE on a pentagon in R2 with an error tolerance of 10−6 regarding the L∞-error using
adaptive refinement. (left) Refinement steps on each area. (middle) Measured  L∞-error compared with the exact solution.
(right) Plotted solution as third coordinate of the parameterization.
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Abstract

In this study, we introduce a novel method for generating smooth surfaces near extraordinary vertices of
initial quadrilateral meshes. To achieve this, we take the following two steps. First, from the initially given
control points, we approximate derivatives of orders 1 and 2 at the vertices nearby extraordinary points by
modifying the moving least-squares method [4]. We then apply a two-dimensional Hermite interpolatory
subdivision rule to the values in the vicinity of the extraordinary vertices to generate smooth surfaces; see
Figure 1. To construct our Hermite interpolation, by taking the directional derivatives along the local axis
vectors into account, we modify the Hermite subdivision mask in [2] which is derived from the univariate
quadratic spline interpolation for f , fx, and fxx. In particular, the tensor-product scheme of the Deslauriers-
Dubuc four-point subdivision [1] is applied to the control points away from extraordinary vertices, resulting
in a C1 surface. Some numerical examples are presented to demonstrate the effectiveness of the proposed
method.

Keywords: Subdivision scheme, extraordinary vertex, Hermite interpolation, four-point scheme

(a) (b) (c)

Figure 1: Stencils for new points (red squares) near the extraordinary vertex
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